3.4.87 \(\int \frac {\sec ^9(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx\) [387]

Optimal. Leaf size=35 \[ \frac {2 i a \sec ^9(c+d x)}{9 d (a+i a \tan (c+d x))^{9/2}} \]

[Out]

2/9*I*a*sec(d*x+c)^9/d/(a+I*a*tan(d*x+c))^(9/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {3574} \begin {gather*} \frac {2 i a \sec ^9(c+d x)}{9 d (a+i a \tan (c+d x))^{9/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^9/(a + I*a*Tan[c + d*x])^(7/2),x]

[Out]

(((2*I)/9)*a*Sec[c + d*x]^9)/(d*(a + I*a*Tan[c + d*x])^(9/2))

Rule 3574

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*b*(
d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2
, 0] && EqQ[Simplify[m/2 + n - 1], 0]

Rubi steps

\begin {align*} \int \frac {\sec ^9(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx &=\frac {2 i a \sec ^9(c+d x)}{9 d (a+i a \tan (c+d x))^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.65, size = 59, normalized size = 1.69 \begin {gather*} \frac {2 i \sec ^7(c+d x) (i+\tan (c+d x))}{9 a^3 d (-i+\tan (c+d x))^3 \sqrt {a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^9/(a + I*a*Tan[c + d*x])^(7/2),x]

[Out]

(((2*I)/9)*Sec[c + d*x]^7*(I + Tan[c + d*x]))/(a^3*d*(-I + Tan[c + d*x])^3*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 114 vs. \(2 (29 ) = 58\).
time = 0.77, size = 115, normalized size = 3.29

method result size
default \(\frac {2 \left (16 i \left (\cos ^{5}\left (d x +c \right )\right )+16 \sin \left (d x +c \right ) \left (\cos ^{4}\left (d x +c \right )\right )-20 i \left (\cos ^{3}\left (d x +c \right )\right )-12 \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+5 i \cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{9 d \cos \left (d x +c \right )^{4} a^{4}}\) \(115\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(7/2),x,method=_RETURNVERBOSE)

[Out]

2/9/d*(16*I*cos(d*x+c)^5+16*sin(d*x+c)*cos(d*x+c)^4-20*I*cos(d*x+c)^3-12*cos(d*x+c)^2*sin(d*x+c)+5*I*cos(d*x+c
)+sin(d*x+c))*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)^4/a^4

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 626 vs. \(2 (27) = 54\).
time = 0.47, size = 626, normalized size = 17.89 \begin {gather*} -\frac {2 \, {\left (-i \, \sqrt {a} - \frac {2 \, \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {6 i \, \sqrt {a} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {14 \, \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {14 i \, \sqrt {a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {42 \, \sqrt {a} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} - \frac {14 i \, \sqrt {a} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} - \frac {70 \, \sqrt {a} \sin \left (d x + c\right )^{7}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{7}} - \frac {70 \, \sqrt {a} \sin \left (d x + c\right )^{9}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{9}} + \frac {14 i \, \sqrt {a} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} - \frac {42 \, \sqrt {a} \sin \left (d x + c\right )^{11}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{11}} + \frac {14 i \, \sqrt {a} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}} - \frac {14 \, \sqrt {a} \sin \left (d x + c\right )^{13}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{13}} + \frac {6 i \, \sqrt {a} \sin \left (d x + c\right )^{14}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{14}} - \frac {2 \, \sqrt {a} \sin \left (d x + c\right )^{15}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{15}} + \frac {i \, \sqrt {a} \sin \left (d x + c\right )^{16}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{16}}\right )} {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}^{\frac {7}{2}}}{9 \, {\left (a^{4} - \frac {8 \, a^{4} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {28 \, a^{4} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {56 \, a^{4} \sin \left (d x + c\right )^{6}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{6}} + \frac {70 \, a^{4} \sin \left (d x + c\right )^{8}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{8}} - \frac {56 \, a^{4} \sin \left (d x + c\right )^{10}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{10}} + \frac {28 \, a^{4} \sin \left (d x + c\right )^{12}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{12}} - \frac {8 \, a^{4} \sin \left (d x + c\right )^{14}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{14}} + \frac {a^{4} \sin \left (d x + c\right )^{16}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{16}}\right )} d {\left (-\frac {2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1\right )}^{\frac {7}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

-2/9*(-I*sqrt(a) - 2*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 6*I*sqrt(a)*sin(d*x + c)^2/(cos(d*x + c) + 1)^2
 - 14*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 - 14*I*sqrt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 42*sqrt
(a)*sin(d*x + c)^5/(cos(d*x + c) + 1)^5 - 14*I*sqrt(a)*sin(d*x + c)^6/(cos(d*x + c) + 1)^6 - 70*sqrt(a)*sin(d*
x + c)^7/(cos(d*x + c) + 1)^7 - 70*sqrt(a)*sin(d*x + c)^9/(cos(d*x + c) + 1)^9 + 14*I*sqrt(a)*sin(d*x + c)^10/
(cos(d*x + c) + 1)^10 - 42*sqrt(a)*sin(d*x + c)^11/(cos(d*x + c) + 1)^11 + 14*I*sqrt(a)*sin(d*x + c)^12/(cos(d
*x + c) + 1)^12 - 14*sqrt(a)*sin(d*x + c)^13/(cos(d*x + c) + 1)^13 + 6*I*sqrt(a)*sin(d*x + c)^14/(cos(d*x + c)
 + 1)^14 - 2*sqrt(a)*sin(d*x + c)^15/(cos(d*x + c) + 1)^15 + I*sqrt(a)*sin(d*x + c)^16/(cos(d*x + c) + 1)^16)*
(sin(d*x + c)/(cos(d*x + c) + 1) + 1)^(7/2)*(sin(d*x + c)/(cos(d*x + c) + 1) - 1)^(7/2)/((a^4 - 8*a^4*sin(d*x
+ c)^2/(cos(d*x + c) + 1)^2 + 28*a^4*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 56*a^4*sin(d*x + c)^6/(cos(d*x + c)
 + 1)^6 + 70*a^4*sin(d*x + c)^8/(cos(d*x + c) + 1)^8 - 56*a^4*sin(d*x + c)^10/(cos(d*x + c) + 1)^10 + 28*a^4*s
in(d*x + c)^12/(cos(d*x + c) + 1)^12 - 8*a^4*sin(d*x + c)^14/(cos(d*x + c) + 1)^14 + a^4*sin(d*x + c)^16/(cos(
d*x + c) + 1)^16)*d*(-2*I*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)^(7/2))

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 89 vs. \(2 (27) = 54\).
time = 0.40, size = 89, normalized size = 2.54 \begin {gather*} \frac {32 i \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{9 \, {\left (a^{4} d e^{\left (8 i \, d x + 8 i \, c\right )} + 4 \, a^{4} d e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, a^{4} d e^{\left (4 i \, d x + 4 i \, c\right )} + 4 \, a^{4} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{4} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

32/9*I*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))/(a^4*d*e^(8*I*d*x + 8*I*c) + 4*a^4*d*e^(6*I*d*x + 6*I*c) + 6*
a^4*d*e^(4*I*d*x + 4*I*c) + 4*a^4*d*e^(2*I*d*x + 2*I*c) + a^4*d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**9/(a+I*a*tan(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^9/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^9/(I*a*tan(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

Mupad [B]
time = 6.49, size = 50, normalized size = 1.43 \begin {gather*} \frac {{\mathrm {e}}^{-c\,5{}\mathrm {i}-d\,x\,5{}\mathrm {i}}\,\sqrt {a+\frac {a\,\sin \left (c+d\,x\right )\,1{}\mathrm {i}}{\cos \left (c+d\,x\right )}}\,2{}\mathrm {i}}{9\,a^4\,d\,{\cos \left (c+d\,x\right )}^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^9*(a + a*tan(c + d*x)*1i)^(7/2)),x)

[Out]

(exp(- c*5i - d*x*5i)*(a + (a*sin(c + d*x)*1i)/cos(c + d*x))^(1/2)*2i)/(9*a^4*d*cos(c + d*x)^4)

________________________________________________________________________________________